Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We report that a dielectric polymer chain, constrained at both ends, sharply collapses when exposed to a high electric field. The chain collapse is driven by nonlocal dipolar interactions and anisotropic polarization of monomers, a characteristic of real polymers that prior theories were unable to incorporate. Once collapsed, a large number of chain monomers accumulate at the center location between the chain ends, locally increasing the electric field and polarization by orders of magnitude. The chain collapse is sensitive to the orientation of the applied electric field and chain stretch. Our findings not only offer new ways for rapid actuation and sensing but also provide a pathway to discover the critical physics behind instabilities and electrical breakdown in dielectric polymers.more » « lessFree, publicly-accessible full text available August 29, 2026
- 
            Elastomers embedded with micro- and nanoscale droplets of liquid metal (LM) alloys like eutectic gallium-indium (EGaIn) can exhibit unique combinations of elastic, thermal, and electrical properties that are difficult to achieve using rigid filler. For composites with sufficient concentrations of liquid metal, the LM droplets can form percolating networks that conduct electricity and deform with the surrounding elastomer as the composite is stretched. Surprisingly, experimental measurements performed on LM-embedded elastomers (LMEEs) show that the total electrical resistance of the composite increases only slightly even as the elastomer is stretched to several times its natural length. In contrast, Pouillet's Law would predict an exponential increase in resistance (Ω) with stretch (λ) due to the incompressibility of liquid metal and elastomer. In this manuscript, we perform a computational analysis to examine the unique electromechanical properties of conductive LMEE composites. Our analysis suggests that the gauge factor that quantifies electromechanical coupling (i.e. g = {ΔΩ/Ω 0 } / λ) decreases with increasing tortuosity of the conductive pathways formed by the connected LM droplets. A dimensionless parameter for path tortuosity can be used to estimate g for statistically homogeneous LMEE composites. These results rationalize experimental observations and provide insight into the influence of liquid metal droplet assembly on the functionality of the composite.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
